Transformations
A transformation/function/mapping is a rule that assigns to each vector $\vec{x}$ in $\mathbb{R}^n$ a vector $T(\vec{x})$ in $\mathbb{R}^m$
$$ T : \mathbb{R}^n \rightarrow \mathbb{R}^m $$
Domain of $T$: $\mathbb{R}^n$
Codomain of $T$: $\mathbb{R}^m$
Image of $\vec{x}$: $T(\vec{x}) \in \mathbb{R}^m$
Range: set of all images $T(\vec{x})$
Linear transformation: has a unique $m \times n$ standard matrix $A$ such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x}$ in $\mathbb{R}^n$
- Every $j$th column is the vector $T(e_j)$ where $j$ is the $j$th column of the identity matrix: $$A = [
T(\vec{e_1})\dots~T(\vec{e_n})~]$$ - Use this property to find $A$ given $\vec{v}$ and $T(\vec{v})$: $$\vec{v} = ae_1 + be_2 \Leftrightarrow T(\vec{v}) = aT(e_1) + bT(e_2)$$
- Every $j$th column is the vector $T(e_j)$ where $j$ is the $j$th column of the identity matrix: $$A = [
One-to-one (injective): if each $\vec{b}$ in $\mathbb{R}^m$ is the image of at most one $\vec{x}$ in $\mathbb{R}^n$ (every vector is mapped to a different output)
- $T$ is one-to-one if and only if $T(\vec{x})=\vec{0}$ has only the trivial solution
- $T$ is one-to-one if and only if the columns of the standard matrix are linearly independent
Onto (surjective): if each $\vec{b}$ in $\mathbb{R}^m$ is the image of at least one $\vec{x}$ in $\mathbb{R}^n$ (all possible outputs can be reached)
- $T$ is onto if and only if the columns of the standard matrix span $\mathbb{R}^m$
Geometric transformations #
Rotation #
By $\varphi$ counter-clockwise
$$ \begin{pmatrix} \cos{\varphi} & -\sin{\varphi} \\\ \sin{\varphi} & \cos{\varphi} \end{pmatrix} $$
Contraction/expansion #
$$ \begin{pmatrix} a & 0 \\\ 0 & b \end{pmatrix} $$
- Horizontal contraction: $0 < a < 1$
- Horizontal expansion: $a > 1$
- Vertical contraction: $0 < b < 1$
- Vertical expansion: $b > 1$
Shears #
$$ \begin{pmatrix} 1 & a \\\ b & 1 \end{pmatrix} $$
- Horizontal shear: left $a < 0$, right $a > 0$
- Vertical shear: left $b < 0$, right $b > 0$